Luck-lady.ru

Настольная книга финансиста
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Анализ мультипликативной модели

Мультипликативная и аддитивная модели временных рядов. Прогнозирование на их основе.

Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания.

Простейший подход- расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда. Общий вид аддитивной модели следующий:

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент. Общий вид мультипликативной модели выглядит так:

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент. Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений трендовой, циклической и случайной компонент для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

1. Выравнивание исходного ряда методом скользящей средней.

2. Расчет значений сезонной компоненты.

3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной или мультипликативной модели.

4. Аналитическое выравнивание уровней и расчет значений тренда с использованием полученного уравнения тренда.

5. Расчет полученных по модели значений или

6. Расчет абсолютных и относительных ошибок.

Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.

На практике отличить аддитивную модель от мультипликативной можно по величине сезонной вариации. Аддитивной модели присуща практически постоянная сезонная вариация, тогда как у мультипликативной она возрастает или убывает, графически это выражается в изменении амплитуды колебания сезонного фактора, как это показано на рис.1

На основе проведённого исследования предложены методические разработки по применению инструментария прогностики в инвестиционном проектировании. Для прогнозирования объема продаж, имеющего сезонный характер, предлагается следующий алгоритм построения прогнозной модели:

1.Определяется тренд, наилучшим образом аппроксимирующий фактические данные. Существенным моментом при этом является предложение использовать полиномиальный тренд, что позволяет сократить ошибку прогнозной модели (рис.2).

2.Вычитая из фактических значений объёмов продаж значения тренда, определяют величины сезонной компоненты и корректируют таким образом, чтобы их сумма была равна нулю.

3.Рассчитываются ошибки модели как разности между фактическими значениями и значениями модели.

4.Строится модель прогнозирования:

где: Y– прогнозируемое значение;

S – сезонная компонента;

Е- ошибка модели.

5.На основе модели строится окончательный прогноз. Для этого можно использовать методы экспоненциального сглаживания, что позволяет учесть возможное будущее изменение экономических тенденций, на основе которых построена трендовая модель. Сущность данной поправки заключается в том, что она нивелирует недостаток адаптивных моделей, а именно, позволяет быстро учесть наметившиеся новые экономические тенденции.

где: Yпр t — прогнозное значение объёма продаж;

Yф t-1 – фактическое значение объёма продаж в предыдущем году;

Yм t — значение модели;

а – константа сглаживания

Рис.2 Трендовые модели

Определять константу сглаживания следует как вероятность сохранения существующих экономических тенденций и предпосылок.

Практическая реализация данного метода выявила следующие его особенности:

-для составления прогноза необходимо точно знать величину сезона. Исследования показывают, что множество продуктов имеют сезонный характер, величина сезона при этом может быть различной и колебаться от одной недели до десяти лет и более;

-применение полиномиального тренда вместо линейного позволяет значительно сократить ошибку модели;

-при наличии достаточного количества данных метод даёт хорошую аппроксимацию и может быть эффективно использован при прогнозировании объема продаж в инвестиционном проектировании.

Количественный анализ инвестиций в реальный сектор экономики требует огромных объемов информации, которую зачастую весьма трудно получить из технико-экономических расчетов и имеющейся статистики. Поэтому возникает необходимость прибегнуть к экспертным методам получения информации, особенно прогностической информации. Существование значительных диапазонов возможных будущих состояний объекта прогноза требует разработки не точечных, а интервальных экспертных прогнозов, которые можно использовать для прогнозирования ключевых показателей проекта (объём, цена реализации и т. п.).

27. Статистические группировки: понятие, виды, научные основы проведения

Статистическая группировка: понятия и виды группировки

Группировка- это распределение исходной информации на группы по существенным для них признакам. Различают два вида группировки простая и комбинированная. Простая- когда в основе лежит один групповой признак , качественный или количественный. Комбинированная- когда группировка выполняется по двум и более признакам. Провести группировку значит выполнить ряд последовательных этапов: 1)правильно выбрать группировочный признак. 2)Построить интервальный ряд распределения . 3)Рассчитать сводные и обобщающие показатели по группам. 4)Построить групповую, аналитическую таблицу.

Дата добавления: 2015-04-18 ; просмотров: 373 ; Нарушение авторских прав

Анализ мультипликативной модели (Часть1)

Анализ мультипликативной модели (Часть1)

В предыдущей статье мы рассмотрели один из методов прогнозирования, используемый для временных рядов — анализ аддитивной модели. Нашей задачей было представить пример расчета трендовых значений объема продаж и дать прогноз на будущие периоды на основе изложенных формул, не углубляясь в обоснование коэффициентов. Тем более, широкие возможности программного продукта Microsoft Excel позволяют расчет тренда сделать быстро, используя встроенные статистические функции.

Очевидно, чтобы выполнить прогноз, применяя стандартные технологии, нужна информация. И вот эта проблема является достаточно серьезной. Как правило, на современных предприятиях статистические ряды не накоплены. Информационная база начинается где-то в 90-х годах, а многое в тот период было неопределенным. Государственные статистические данные стали не актуальными, и достоверность данных далеко не безоговорочна.

Но функции планирования и прогнозирования являются основными видами деятельности любой организации, а стабилизационные процессы, протекающие в нашей стране за последний период, все же позволяют надеяться, что определенный тренд развития существует, и в будущем не будет нарушен. Определенные выводы можно будет делать и без полных статистических данных на маленькой выборке. Главное, правильно сформулировать условия решения задачи и выбрать метод, который был бы адекватен статистической природе изучаемых временных рядов.

Так, например, прежде чем определять метод, которым следует строить прогноз, аналитик должен решить для себя: обладает ли ряд, который он изучает, свойством сезонности.

Сезонность является объективным свойством временных рядов. Сезонная вариация — это повторение данных через небольшой промежуток времени, т.е. если форма кривой, которая описывает продажи товара, повторяет свои характерные очертания и тенденции, то о таком ряде можно говорить, что он обладает сезонностью. В этом случае, период прогнозирования должен быть достаточно большой, чтобы можно было наблюдать сезонные всплески и колебания продаж.

В некоторых временных рядах значение сезонной вариации — это определенная доля трендового значения, т.е. сезонная вариация увеличивается с возрастанием значений тренда. В таких случаях используется мультипликативная модель.

Читать еще:  Анализ потребителей в маркетинге

Для мультипликативной модели фактическое значение рассчитывается по формуле:


Расчет фактического значения в мультипликативной модели

Т — трендовое значение

S — сезонная вариация

Е — ошибка прогноза

Анализ мультипликативной модели рассмотрим на примере. В таблице указан объем продаж за последние одиннадцать кварталов. На основании этих данных дадим прогноз объема продаж на следующие два квартала.

Опираясь на предложенный алгоритм, на первом этапе исключим влияние сезонной вариации. Воспользуемся методом скользящей средней, заполним следующие столбцы таблицы.


Метод скользящей средней

Простое скользящее среднее (Simple Moving Avarage) — это средний арифметический показатель (объем продаж, объем производства, цена) за определенный период времени.

Одним важным достоинством скользящих средних является их способность давать сигналы о развороте тренда, подтверждать рост, спад.

Общая формула для вычисления SMA за n-ый период такая:


Простое скользящее среднее за период N

где n — период усреднения,

Р(i) — усредняемый объем (i — 1) период тому назад (i-е измерение или отсчет),

P(1) — объем продаж за последний период,

P(n) — самый старый по оси времени объем рассматриваемого нами временного промежутка.

1 год = 4 квартала. Поэтому найдем среднее значение объема продаж за 4 последовательных квартала. Для этого нужно сложить 4 последовательных числа из второго столбца, разделить на 4 (количество слагаемых) и результат запишем в третий столбец напротив третьего слагаемого: (63 74 79 120)/4=84 ; (74 79 120 67)/4=85; и т.д.

Если скользящая средняя вычисляется для нечетного числа сезонов, то результат не центрируется, в нашем примере число сезонов — восемь, поэтому сумму двух чисел из третьего столбца, разделим на 2 и запишем в четвертый столбец напротив верхнего из них: (84 85)/2=2=84,5.

Оценка сезонной вариации для аддитивной модели рассчитывается как разность объема продаж и центрированной скользящее средней. Для мультипликативных моделей — это отношение. Числа второго столбца делим на числа четвертого и результат округляем до трех цифр и запишем в пятый столбец: 79/84,5=0,935.

Следующим этапом необходимо исключить сезонную вариацию из фактических данных — провести десезонализация данных. Но это уже в следующем выпуске.

Анализ мультипликативной модели

Модель мультипликативная

Способ абсолютных разниц применяется для расчета влияния факторов на прирост результативного показателя в детерминированном анализе, но только в мультипликативных моделях ( Y = xt-x x x i) и моделях мультипликативно-аддитивного типа Y= (а — Ь)с и Y = = a(b — с). И хотя его использование ограничено, но благодаря своей простоте он получил широкое применение в АХД. [c.58]

Рассмотрим алгоритм расчета факторов этим способом в моделях мультипликативно-аддитивного вида. Для примера возьмем факторную модель прибыли от реализации продукции [c.58]

Модель мультипликативная — жестко детерминированная факторная модель, в которую факторы входят в виде произведения. [c.535]

Влияние использования материальных ресурсов на величину материальных затрат оценивается с использованием двух-факторных моделей мультипликативная модель изучает влияние материалоемкости по прямым затратам и коэффициента соотношения общих и прямых затрат аддитивная модель — влияние материалоемкости отдельных видов материальных ресурсов на совокупный показатель материалоемкости. [c.242]

Аддитивная модель. Мультипликативная модель. Автокорреляция. Лаг. [c.23]

Строго говоря, все сезонные модели мультипликативны и имеют лишь один линейный элемент (роп), он и будет аддитивным. [c.28]

В данном случае для преобразования исходной факторной модели, построенной на математических зависимостях, использованы способы удлинения и расширения. В результате получилась более содержательная модель мультипликативно-аддитивно-кратного вида, которая имеет большую познавательную ценность, поскольку учитывает причинно-следственные связи между показателями. Данная модель позволяет исследовать, как влияют на доходность капитала объем продаж, отпускные цены, себестоимость реализованной продукции, внереализационные финансовые результаты, а также скорость обращения капитала. [c.96]

Итак, мы рассмотрели четыре способа выявления сезонной компоненты аддитивную модель, мультипликативную модель, метод экспоненциального сглаживания с тремя параметрами, гармонический анализ Фурье (рис. П-7). В нашем примере оказалось, что наименьшую ошибку дает мультипликативная модель, т. е. применение индексов сезонности. [c.439]

Поскольку модель мультипликативная, то применимы следующие способы ее обработки. [c.37]

Методика построения мультипликативных моделей эффективности производства. [c.106]

Вычислительная схема реализации расчетов по модели (2)— (9) на основе мультипликативного алгоритма симплекс. — метода показана на рисунке. [c.100]

Эти модели отражают процесс детализации исходной факторной системы мультипликативного вида и расширения ее за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от цели исследования, атакже от возможностей детализации и формализации показателей в пределах установленных правил. [c.34]

В результате получается конечная мультипликативная модель в виде произведения нового набора факторов. [c.35]

Наиболее универсальным из них является способ цепной подстановки. Он используется для расчета влияния факторов во всех типах детерминированных факторных моделей аддитивных, мультипликативных, кратных и смешанных (комбинированных). Этот способ позволяет определить влияние отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде. С этой целью определяют ряд условных величин результативного показателя, которые учитывают изменение одного, затем двух, трех и последующих факторов, допуская, что остальные не меняются. Сравнение величины результативного показателя до и после изменения уровня того или другого фактора позволяет элиминировать влияние всех факторов, кроме одного, и определить воздействие последнего на прирост результативного показателя. Порядок применения этого способа рассмотрим на примере, приведенном в табл. 4.1. [c.55]

Как нам уже известно, объем валовой продукции (ВП) зависит от двух основных факторов первого порядка численности рабочих (ЧР) и среднегодовой выработки (ГВ). Имеем двухфакторную мультипликативную модель [c.55]

Способ относительных разниц применяется для измерения влияния факторов на прирост результативного показателя только в мультипликативных моделях. Здесь используются относительные приросты факторных показателей, выраженные в виде коэффициентов или процентов. Рассмотрим методику расчета влияния факторов этим способом для мультипликативных моделей типа Y ab . [c.59]

Мультипликативные модели — модели умножения. Например, объем продукции может быть определен по выражению [c.85]

Для кратной формы связи, при тех же предположениях, что и для мультипликативной модели [c.273]

Корреляционная модель себестоимости добычи нефти и попутного газа по указанным факторам была рассчитана по мультипликативной функции Кобба — Дугласа (41). В результате решения этой модели было составлено сводное уравнение по нефтедобывающей промышленности Украинской ССР [c.90]

Основным недостатком логарифмического метода анализа является то, что он не может быть универсальным , его нельзя применять при анализе любого вида моделей факторных систем. Если при анализе мультипликативных моделей факторных систем при использовании логарифмического метода достигается получение точных величин влияния факторов (в. случае, когда Az = 0), то при таком же анализе кратных моделей факторных систем получение точных величин влияния факторов не удается. [c.126]

Формирование рабочих формул интегрального метода для мультипликативных моделей. Применение интегрального метода факторного анализа в детерминированном экономическом анализе наиболее полно решает проблему получения однозначно определяемых величин влияния факторов. [c.134]

Выше было установлено, что любую модель конечной факторной системы можно привести к двум видам — мультипликативной и кратной. Это условие предопределяет то, что исследователь имеет дело с двумя основными видами моделей факторных систем, так как остальные модели — это их разновидности. [c.134]

Читать еще:  Внешний анализ предприятия

Для облегчения решения задачи построения подынтегральных выражений в зависимости от вида модели факторной системы (мультипликативные или кратные) предложим матрицы исходных значений для построения подынтегральных выражений элементов структуры факторной системы. Принцип, заложенный в матрицах, позволяет построить подынтегральные выражения элементов структуры факторной системы для любого набора элементов модели конечной факторной системы. В основном построение подынтегральных выражений элементов структуры факторной системы — процесс индивидуальный, и в случае, когда число элементов структуры измеряется большим количеством, что в экономической практике является редкостью, исходят из конкретно заданных условий. [c.134]

При формировании рабочих формул расчета влияния факторов в условиях применения ЭВМ пользуются следующими правилами, -отражающими механику работы с матрицами подынтегральные выражения элементов структуры факторной системы для мультипликативных моделей строятся путем произведения полного набора элементов значений, взятых по каждой строке матрицы, отнесенных к определенному элементу структуры факторной системы с последующей расшифровкой [c.134]

Элементы мультипликативной модели [c.135]

В случае отсутствия универсальных вычислительных средств предложим чаще всего встречающийся в экономическом анализе набор формул расчета элементов структуры для мультипликативных (табл. 5.4) и кратных (табл. 5.3) моделей факторных систем, которые были выведены в результате выполнения процесса интегрирования. Учитывая потребность наибольшего их упрощения, выполнена вычислительная процедура по сжатию формул, полученных после вычисления определенных интегралов (операции интегрирования). [c.138]

Набор частных свойств специфичен, как и формы их синтеза. В большинстве случаев отдельные свойства коррелируют, что обусловливает т.н. мультипликативный эффект взаимоусиления (чаще) или взаимовлияния на полезность (качество) изделия. Поэтому приближенный к истине при отсутствии теоретически обоснованной модели является способ выражения интегрального показателя качества функцией вида [c.124]

Алгоритм расчета для мультипликативной четырехфакторнон модели валовой продукции выглядит следующим образом [c.58]

Интегральный метол применяется для измерения влияния факторов в мультипликативных, кратных и кратно-а 1дитии ых моделях. Его использование позволяет получать более точные результаты расчета влияния факторов по сравнению со способами г пной подстановки, абсолютных и относительных разниц, поскольку дополнительный прирост результативного показателя от взаимодействия факторов присоединяется не к последнему фактору, а делится поровну между ними. [c.61]

Способ логарифмирования применяется для измерения влияния факторов в мультипликативных моделях. Как п при интегрировании, здесь результат расчета также не зависит от месторасположения факторов в модели. По сравнению с интегральным методом логарифмирование обеспечивает более высокую точность расчетов. Если при интегрировании дополнительный прирост от взаимодействия факторов распределяется поровну между ними, то с помощью логарифмирования результат совместного действия факторов распределяется пропорционально доли изолированного влияния каждого фактора на уровень результативного показателя. В тгом его преимущество, а недостаток — в ограниченности сферы применения. [c.63]

При построении моделей себестоимости добычи нефти и газа по НГДУ Прикарпатья (линейная, полином третьей степени мультипликативная функция Кобба — Дугласа) ни одна из них не выдержала проверки на адекватность (табл. 29). Величины критериев, характеризующих экономико-статистическую достоверность кинетической производственной функции по нефтегазодобывающим управлениям Прикарпатья, приведены в табл. 30. [c.94]

Построенные многофакторные корреляционные модели по нефте-х добывающей промышленности Украины, нефтегазодобывающим управлениям Прикарпатья, НГДУ Долинанефтегаз вида множественной линейной функции, мультипликативной функции Кобба — Дугласа, кинетической производственной функции позволили сделать количественную оценку влияния различных факторов в их взаимосвязи на динамику себестоимости добычи нефти и попутного газа. Исследована специфика экономико-математического моделирования в нефтедобывающей промышленности, и с этих позиций обосновано использование в качестве функции себестоимости добычи нефти и газа кинетической трансцендентной функции вида [c.111]

Как видно, метод взвешенных конечных разностей учитывает все варианты подстановок. Одновременно при усреднении нельзя получить однозначное количественное значение отдельных факторов. Этот метод весьма трудоемкий и по сравнению с предыдущим методом усложняет вычислительную процедуру, так как приходится перебирать все возможные варианты подстановок. В своей основе метод взвешенных конечных разностей идентичен (только для двухфактор-ной мультипликативной модели) методу простого прибавления неразложимого остатка при делении этого остатка между факторами поровну. Это подтверждается следующим преобразованием формулы [c.124]

В более общем виде этот метод был описан еще А. Хума-лом, который писал Такое разделение прироста произведения может быть названо нормальным. Название оправдывается тем, что полученное правило разделения остается в силе при любом числе сомножителей, а именно прирост произведения разделяется между переменными сомножителями пропорционально логарифмам их коэффициентов изменения [69, с. 207]. Действительно, в случае наличия большего числа сомножителей в анализируемой мультипликативной модели факторной системы (например, z = хурт) суммарное приращение результативного показателя Az составит [c.125]

Вид моделей факторной системы /= xyzq (мультипликативная модель). [c.135]

Факторный индексный анализ. Аддитивные и мультипликативные модели анализа: определение относительного и абсолютного влияния факторов

Под факторным анализомпонимается методика комплексного и системного изучения и измерения воздействия факторов на величину результативных показателей. Различают несколько типов факторного анализа. Один из них — детерминированный факторный анализ.Индекс это статистический показатель, представляющий собой отношение двух состояний какого-либо признака. С помощью индексов проводятся сравнения с планом, в динамике, в пространстве. Индекс называется простым (синонимы: частный, индивидуальный), если исследуемый признак берется без учета связи его с другими признаками изу-чаемых явлений. Простой индекс имеет вид:

Р1 и Ро — сравниваемые состояния признака.

Индекс называется аналитическим (синонимы: общий, агрегатный), если исследуемый признак берется не изолированно, а в связи с другими признаками. Аналитический индекс всегда состоит из двух компонент: индексируемый признак р (тот, динамика которого исследуется) и весовой признак q. С помощью признаков-весов измеряется динамика сложного экономического явления, отдельные элементы которого несоизмеримы. Простые и аналитические индексы дополняют друг друга.

1р= р1 q1 / р0 q1 или = р0q1 / р0 q0 , где

q1 или q0 — весовой признак.

С помощью индексов в анализе финансово-хозяйственной деятельности решаются следующие основные задачи:

— оценка изменения уровня явления (или относительного изменения по-казателя);

— выявление роли отдельных факторов в изменении результативного признака; .

— оценка влияния изменения структуры совокупности на динамику.

Центральной проблемой при построении аналитических индексов является проблема взвешивания. Решая ее, аналитику необходимо сначала выбрать сам весовой признак, а затем — период, на уровне которого берет-ся признак-вес.

Первая из этих задач решается довольно легко путем отыскания системы связанных признаков, произведение которых дает экономически понятный показатель (например, Т = Ч * В, где Т-товарооборот, Ч-численность работающих, В-выработка на одного работающего). Что касается второй задачи, то научного обоснования выбора периода весов не сущест-вует, в каждом конкретном случае аналитик делает это исходя из задач анализа. Индексы, взвешенные на базовые или отчетные значе-ния, имеют разный вид и по-разному могут интерпретироваться.

Читать еще:  Анализ основных показателей производственной деятельности

Признак, непосредственно относящийся к изучаемому явлению и характеризующий его количественную сторону, называется первичнымили количественным. Первичные признаки объемные, их можно суммировать. Примерами таких признаков являются численность работающих на пред-приятии (Ч), величина основных средств (ОС) и т.д.

Признаки, относящиеся к изучаемому явлению не непосредственно, а через один или несколько других признаков и характеризующие качественную сторону изучаемого явления, называются вторичными или каче-ственными.. Отличительными особенностями вторичных признаков явля-ется то, что это всегда относительные показатели, их нельзя непосредст-венно суммировать в пространстве (исключение — суммирование при рас-чете некоторых статистик, например, коэффициентов регрессии, корреля-ции и др., когда экономическая природа показателя не принимается во внимание). В качестве примера можно привести показатели средней зара-ботной платы, рентабельности.

Существует следующее правило определения периода для признака-веса: при построении аналитических индексов по вторичным признакам рекомендуется брать веса на уровне отчетного периода, а по первичным -базисного.

Это обусловлено приоритетностью качественных показателей перед количественными: практический интерес представляет определение экономического эффекта от изменения качественного показателя, полученно-го в отчетном, а не в базисном периоде.

В детерминированном анализе выделяют следующие типы наиболее часто встречающихся факторных моделей:

1. Аддитивные модели используются в тех случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей.

2. Мультипликативные модели применяются тогда, когда результативный показатель представляет собой произведение нескольких факторов.

3. Кратные модели применяются тогда, когда результативный показатель получают делением одного факторного на величину другого.

4. Смешанные модели – это сочетание в различных комбинациях предыдущих моделей.

У = (а+в)/с; У = а/(в+с); У = (а*в)/с; У = (а+в)*с.

Моделирование мультипликативных факторных систем осуществляется путем последовательного расчленения факторов исходной системы на факторы-сомножители. Например, при исследовании процесса формирования объема производства продукции можно применять такие детерминированные модели, как:

ВП=КР*ГВ; ВП=КР*Д*ДВ; ВП=КР*Д*П*СВ

Эти модели отражают процесс детализации исходной факторной системы мультипликативного вида и расширения ее за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от цели исследования, а также от возможностей детализации и формализации показателей, а пределах установленных правил.

Аналогичным образом осуществляется моделирование аддитивных факторных систем за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от целей исследования, а также от возможностей детализации и формализации показателей в пределах установленных правил.

Аналогичным образом осуществляется моделирование аддитивных факторных систем за счет расчленения одного из факторных показателей на его основные элементы.

Например: VРП= VВП-ВИ (объем внутрихозяйственного использования). В хозяйстве продукция использовалась в качестве семян (С) и кормов (К). Тогда приведенную исходную модель можно записать следующим образом: VРП= VВП–(С+К).

К классу кратных моделей применяют следующие способы их преобразования: удлинения, формального разложения, расширения и сокращения.

Первый метод предусматривает удлинение числителя исходной модели путем замены одного или нескольких факторов на сумму однородных показателей. Например, себестоимость единицы продукции можно представить в качестве функции двух факторов: изменение суммы затрат (3) и объема выпуска продукции (VВП). Исходная модель этой факторной системы будет иметь вид: С=З/ VВП

Если общую сумму затрат (3) заменить отдельными их элементами, такими, как оплата труда (ОТ), сырье и материалы (СМ), амортизация основных средств (А), накладные затраты (НЗ) и др., то детерминированная факторная модель будет иметь вид аддитивной модели с новым набором факторов:

С=ОТ/ VВП+ СМ/ VВП+ А/ VВП+ НЗ/ VВП=х1+х2+х3+х4,

где X1- трудоемкость продукции; Х2 — материалоемкость продукции; Х3 — фондоемкость продукции; Х4- уровень накладных затрат.

Способ формального разложения факторной системы предусматривает удлинение знаменателя исходной факторной модели путем замены одного или нескольких факторов на сумму или произведение однородных показателей. Если b = l + m + n + p, то у=а/в=а/ l + m + n + p.

В результате получили конечную модель того же вида, что и исходной факторной системы (кратную модель). На практике такое разложение встречается довольно часто. Например, при анализе показателя рентабельности производства (Р): Р=П/З

Где П — сумма прибыли от реализации продукции; 3 — сумма затрат на производство и реализацию продукции. Если сумму затрат заменить на отдельные ее элементы, конечная модель в результате преобразования приобретет следующий вид: Р=П/ОТ+СМ+А+НЗ.

Себестоимость одного тонно-километра зависит от суммы затрат на содержание и эксплуатацию автомобиля (3) и от его среднегодовой выработки (ГВ). Исходная модель этой системы будет иметь вид: C т/км = 3 / ГВ. Учитывая, что среднегодовая выработка машины в свою очередь зависит от количества отработанных дней одним автомобилем за год (Д), продолжительности смены (П) и среднечасовой выработки (СВ), мы можем значительно удлинить эту модель и разложить прирост себестоимости на большее количество факторов: C т/км = 3 / ГВ=3 /Д*П*СВ.

Метод расширения предусматривает расширение исходной факторной модели за счет умножения числителя и знаменателя дроби на один или несколько новых показателей. Например, если в исходную модель у=а/в ввести новый показатель с, то модель примет вид: у=а/в=а*с/в*с=а/с*с/в=х1*х2.

В результате получилась конечная мультипликативная модель в виде произведения нового набора факторов.

Этот способ моделирования очень широко применяется в анализе. Например, среднегодовую выработку продукции одним работником (показатель производительности труда) можно записать таким образом: ГВ = ВП / КР. Если ввести такой показатель, как количество отработанных дней всеми работниками (åД), то получим следующую модель годовой выработки:

ГВ = ВП *åД / åД *КР= ВП/åД * åД/ КР = ДВ*Д

где ДВ – среднедневная выработка, Д – количество отработанных дней одним работником.

После введения показателя количества отработанных часов всеми работниками (åТ) получим модель с новым набором факторов: среднечасовой выработки (СВ), количества отработанных дней одним работником (Д) и продолжительности рабочего дня (П).

ГВ = ВП *åД *åТ / åД КР * åТ = ВП/åТ * åТ / КР * åТ /åТ = СВ*Д*П

Способ сокращения представляет собой создание новой факторной модели путем деления числителя и знаменателя дроби на один и тот же показатель:

у=а/в=а:с/в:с=х1/х2.

Фондоотдача определяется отношением валовой (ВП)или товарной продукции (ТП)к среднегодовой стоимости основных производственных фондов (ОПФ):

ФО=ВП/ОПФ

Разделив числитель и знаменатель на среднегодовое количество рабочих (КР), получим содержательную кратную модель с другими факторными показателями: среднегодовой выработки продукции одним рабочим (ГВ), характеризующей уровень производительности труда, и фондовооруженности труда (Фв):

ФО=ВП:КР/ОПФ:КР=ГВ/Фв

Необходимо заметить, что на практике для преобразования одной и той же модели может быть последовательно использовано несколько методов. Например:

ФО=РП/ОПФ=(П+СБ)/ОПФ=П/ОПФ+СБ/ОПФ= П/ОПФ+ОС/ОПФ*СБ/ОС

где РП – объем реализованной продукции(выручка); СБ – себестоимость реализованной продукции, П – прибыль, ОС – средние остатки основных средств.

В этом случае для преобразования исходной факторной модели, которая построена на математических зависимостях, использованы способы удлинения и расширения. В результате получилась более содержательная модель, которая имеет большую познавательную ценность, т.к. учитывает причинно-следственные связи между показателями. Полученная конечная модель позволяет исследовать, как влияет на фондоотдачу рентабельность основных средств производства, соотношения между основными и оборотными средствами, а также коэффициент оборачиваемости оборотных средств.

Ссылка на основную публикацию
Adblock
detector