Luck-lady.ru

Настольная книга финансиста
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Многомерный анализ это

Методы многомерного статистического анализа

Встречаются такие ситуации, в которых случайная изменчивость была представлена одной-двумя случайными пе­ременными, признаками.

Например, при исследовании статистической совокупности людей нас интересуют рост и вес. В этой ситуации, сколько бы людей в статистиче­ской совокупности ни было, мы всегда можем построить диаграмму рассея­ния и увидеть всю картину в целом. Однако если признаков три, например, добавляется признак — возраст человека, тогда диаграмма рассеяния долж­на быть построена в трехмерном пространстве. Представить совокупность точек в трехмерном пространстве уже довольно затруднительно.

В реально­сти на практике каждое наблюдение представляется не одним-двумя-тремя числами, а некоторым заметным набором чисел, которые описывают де­сятки признаков. В этой ситуации для построения диаграммы рассеяния потребовалось бы рассматривать многомерные пространства.

Раздел статистики, посвященный исследованиям экспе­риментов с многомерными наблюдениями, называется многомерным стати­стическим анализом.

Измерение сразу нескольких признаков (свойств объекта) в одном экс­перименте в общем более естественно, чем измерение какого-либо одного, двух. Поэтому потенциально многомерный статистический анализ имеет широкое поле для применения.

К многомерному статистическому анализу относят следую­щие разделы:

• методы контроля качества.

Факторный анализ

При исследовании сложных объектов и систем (например, в психологии, биологии, социологии и т. д.) величины (факторы), определяющие свойства этих объектов, очень часто невозможно измерить непосредственно, а ино­гда неизвестно даже их число и содержательный смысл. Но для измерения могут быть доступны иные величины, так или иначе зависящие от инте­ресующих факторов. При этом когда влияние неизвестного интересующего нас фактора проявляется в нескольких измеряемых признаках, эти призна­ки могут обнаруживать тесную связь между собой и общее число факторов может быть гораздо меньше, чем число измеряемых переменных.

Для обнаружения факторов, влияющих на измеряемые переменные, ис­пользуются методы факторного анализа.

Примером применения факторного анализа может служить изучение свойств личности на основе психологических тестов. Свойства личности не поддаются прямому измерению, о них можно судить только по поведе­нию человека или характеру ответов на те или иные вопросы. Для объяс­нения результатов опытов их подвергают факторному анализу, который и позволяет выявить те личностные свойства, которые оказывают влияние на поведение испытуемых индивидуумов.

В основе различных моделей факторного анализа лежит следующая ги­потеза: наблюдаемые или измеряемые параметры являются лишь косвенны­ми характеристиками изучаемого объекта или явления, в действительности существуют внутренние (скрытые, латентные, не наблюдаемые непосред­ственно) параметры и свойства, число которых мало и которые определяют значения наблюдаемых параметров. Эти внутренние параметры принято на­зывать факторами.

Задачей факторного анализа является представление наблюдаемых параметров в виде линейных комбинаций факторов и, быть может, некоторых дополнительных, несущественных возмущений.

Первый этап факторного анализа, как правило, – это выбор новых признаков, которые являются линейными комбинациями прежних и «вби­рают» в себя большую часть общей изменчивости наблюдаемых данных, а потому передают большую часть информации, заключенной в первоначаль­ных наблюдениях. Обычно это осуществляется с помощью метода главных компонент,хотя иногда используют и другие приемы (метод максимального правдоподобия).

Метод главных компонент сводится к выбору новой ортогональной си­стемы координат в пространстве наблюдений. В качестве первой главной компоненты избирают направление, вдоль которого массив наблюдений имеет наибольший разброс, выбор каждой последующей главной компонен­ты происходит так, чтобы разброс наблюдений был максимальным и чтобы эта главная компонента была ортогональна другим главным компонентам, выбранным ранее. Однако факторы, полученные методом главных компо­нент, обычно не поддаются достаточно наглядной интерпретации. Поэтому следующий шаг факторного анализа — преобразование, вращение факторов для облегчения интерпретации.

Дискриминантный анализ

Пусть имеется совокупность объектов, разбитая на несколько групп, и для каждого объекта можно определить, к какой группе он относится. Для каждого объекта имеются измерения нескольких количественных характе­ристик. Необходимо найти способ, как на основании этих характеристик можно узнать группу, к которой относится объект. Это позволит указывать группы, к которым относятся новые объекты той же совокупности. Для решения поставленной задачи применяются методы дискриминантного анализа.

Дискриминантный анализ это раздел статистики, содержанием которого является разработка методов решения задач различения (дискриминации) объектов наблюдения по определенным признакам.

Рассмотрим некоторые примеры.

• Дискриминантный анализ оказывается удобным при обработке ре­зультатов тестирования отдельных лиц, когда дело касается приема на ту или иную должность. В этом случае необходимо всех кандида­тов разделить на две группы: «подходит» и «не подходит».

• Использование дискриминантного анализа возможно банковской ад­министрацией для оценки финансового состояния дел клиентов при выдаче им кредита. Банк по ряду признаков классифицирует их на надежных и ненадежных.

• Дискриминантный анализ может быть привлечен в качестве метода разбиения совокупности предприятий на несколько однородных групп по значениям каких-либо показателей производственно-хозяйствен­ной деятельности.

Методы дискриминантного анализа позволяют строить функции изме­ряемых характеристик, значения которых и объясняют разбиение объектов на группы. Желательно, чтобы этих функций (дискриминантных призна­ков) было немного. В этом случае результаты анализа легче содержательно толковать.

Благодаря своей простоте особую роль играет линейный дискриминант­ный анализ, в котором классифицирующие признаки выбираются как ли­нейные функции от первичных признаков.

Кластерный анализ

Методы кластерного анализа позволяют разбить изучаемую совокуп­ность объектов на группы «схожих» объектов, называемых кластерами.

Слово кластер английского происхождения — cluster переводится как кисть, пучок, группа, рой, скопление.

Кластерный анализ решает следующие задачи:

Читать еще:  Технология анализа проблемных ситуаций

• проводит классификацию объектов с учетом всех тех признаков, которые характеризуют объект. Сама возможность классификации продвигает нас к более углубленному пониманию рассматриваемой совокупности и объектов, входящих в нее;

• ставит задачу проверки наличия априорно заданной структуры или классификации в имеющейся совокупности. Такая проверка дает воз­можность воспользоваться стандартной гипотетико-дедуктивной схе­мой научных исследований.

Большинство методов кластеризации (иерархической группы) являются агломеративными (объединительными) — они начинают с создания эле­ментарных кластеров, каждый из которых состоит ровно из одного исходно­го наблюдения (одной точки), а на каждом последующем шаге происходит объединение двух наиболее близких кластеров в один.

Момент остановки этого процесса может задаваться исследователем (на­пример, указанием требуемого числа кластеров или максимального рассто­яния, при котором достигнуто объединение).

Графическое изображение процесса объединения кластеров может быть получено с помощью дендрограммы — дерева объединения кластеров.

Рассмотрим следующий пример. Проведем классификацию пяти предприятий, каждое из которых характеризуется тремя переменными:

х1 – среднегодовая стоимость основных производственных фондов, млрд руб.;

х2 – материальные затраты на 1 руб. произведенной продукции, коп.;

х3 – объем произведенной продукции, млрд руб.

В таблице приведены соответствующие значения для каждого из предприятий:

МНОГОМЕРНЫЙ АНАЛИЗ

Большой толковый социологический словарь.— М.: АСТ, Вече . Дэвид Джери, Джулия Джери . 1999 .

Смотреть что такое «МНОГОМЕРНЫЙ АНАЛИЗ» в других словарях:

многомерный анализ — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN multivariate analysis … Справочник технического переводчика

Многомерный анализ — см. Методы вариационной статистики … Физическая Антропология. Иллюстрированный толковый словарь.

Многомерный анализ — вариация процедуры факторного анализа. Позволяет выделить малый набор изменений, объясняющих вариативность, наблюдаемую в большинстве шкал, скорее, чем найти основные факторы в сложном массиве взаимозависимых переменных … Энциклопедический словарь по психологии и педагогике

МНОГОМЕРНЫЙ АНАЛИЗ — Вариация процедуры факторного анализа. Этот тип анализа позволяет выделить малый набор измерений, объясняющих вариативность, наблюдаемую в большинстве шкап, скорее, чем найти основные факторы в сложном массиве взаимозависимых переменных. См. Крас … Толковый словарь по психологии

МНОГОМЕРНЫЙ АНАЛИЗ СОЦИАЛЬНОЙ СТРАТИФИКАЦИИ — (multidimentional analysis of social stratification) подход к анализу социальной стратификации и класса, подчеркивающий значение множества факторов в определении полного социально экономического статуса или классового положения человека или… … Большой толковый социологический словарь

Анализ функций многих переменных — Эта статья или раздел грубый перевод статьи на другом языке (см. Проверка переводов). Он мог быть сгенерирован программой переводчиком или сделан человеком со слабыми познаниями в языке оригинала. Вы можете помочь … Википедия

Многомерный статистический анализ — [multidimensional, multivariate statistical analysis] «раздел математической статистики, посвященный математическим методам построения оптимальных планов сбора, систематизации и обработки данных, направленным на выявление характера и… … Экономико-математический словарь

многомерный статистический анализ — «раздел математической статистики, посвященный математическим методам построения оптимальных планов сбора, систематизации и обработки данных, направленным на выявление характера и структуры взаимосвязей между компонентами исследуемого… … Справочник технического переводчика

Анализ — (др. греч. ἀνάλυσις разложение, расчленение) операция мысленного или реального расчленения целого (вещи, свойства, процесса или отношения между предметами) на составные части, выполняемая в процессе познания или предметно практической … Википедия

АНАЛИЗ МНОГОМЕРНЫЙ — англ. analysis, multidimentional; нем. Analyse, mehrdimensionale. Совокупность статист, методов, предназначенных для изучения многомерных явлений, т. е. явлений, характеризующихся большим количеством различных свойств. Antinazi. Энциклопедия… … Энциклопедия социологии

АНАЛИЗ МНОГОМЕРНЫЙ

— англ. analysis, multidimentional; нем. Analyse, mehrdimensionale. Совокупность статист, методов, предназначенных для изучения многомерных явлений, т. е. явлений, характеризующихся большим количеством различных свойств. Antinazi.Энциклопедия социологии,2009

Смотреть что такое АНАЛИЗ МНОГОМЕРНЫЙ в других словарях:

АНАЛИЗ МНОГОМЕРНЫЙ

раздел математической статистики, посвященный математическим методам, направленным на выявление характера и структуры взаимосвязей между компонентами исследуемого многомерного признака и предназначенным для получения научных и практических выводов. смотреть

АНАЛИЗ МНОГОМЕРНЫЙ

позволяет одновременно исследовать взаимоотношения двух и более переменных и в той или иной форме проверять гипотезы о причинных связях между ними [8. – С. 158]. . смотреть

АНАЛИЗ МНОГОМЕРНЫЙ

<math.> multivariate analysis

АНАЛИЗ МНОГОМЕРНЫЙ

análisis con múltiples variables

АНАЛИЗ МНОГОМЕРНЫЙ

стат. көпөлшемді талдау

АНАЛИЗ МНОГОМЕРНЫЙ ДИСПЕРСИОННЫЙ

стат. көпөлшемді дисперсиялық талдау

АНАЛИЗ МНОГОМЕРНЫЙ КОМПЛЕКСНЫЙ

мат. көп өлшемді комплекс анализмех. көп өлшемді кешенді анализ

АНАЛИЗ МНОГОМЕРНЫЙ КОМПЛЕКСНЫЙ

көп өлшемді комплекс анализ

АНАЛИЗ МНОГОМЕРНЫЙ РЕГРЕССИОННЫЙ

мат. көп өлшемді регрессиялық анализстат. көпөлшемді регрессиялық талдау

АНАЛИЗ МНОГОМЕРНЫЙ РЕГРЕССИОННЫЙ

көп өлшемді регрессиялық анализ

АНАЛИЗ МНОГОМЕРНЫЙ СТАТИСТИЧЕСКИЙ

раздел статистики математической (см.), посвященный математич. методам, направленным на выявление характера и структуры взаимосвязей между компонентами исследуемого многомерного признака (см.) и предназначенным для получения научн. и практич. выводов. Исходным массивом многомерных данных для проведения А.м.с. обычно служат рез-ты измерения рассматриваемых признаков (компонент многомерного признака) на каждом из объектов исследуемой совокупности, т. е. последовательность многомерных наблюдений. Значительная часть А.м.с. обслуживает ситуации, в к-рых исследуемый многомерный признак интерпретируется как многомерная случайная величина и соответственно последовательность многомерных наблюдений как выборка из генеральной совокупности. В этом случае выбор методов обработки исходных статистич. данных и анализ их свойств производится на основе тех или иных допущений относительно природы многомерного (совместного) закона распределения вероятностей изучаемого многомерного признака (см. Распределение вероятностей, Закон распределения). По содержанию А.м.с. может быть условно разбит на три основных подраздела: А.м.с. многомерных распределений и их основных характеристик; А.м.с. характера и структуры взаимосвязей между компонентами исследуемого многомерного признака; А.м.с. геометрич. структуры исследуемой совокупности многомерных наблюдений. А.М.С. многомерных распределений и их основных характеристик охватывает ситуации, в к-рых обрабатываемые наблюдения имеют вероятностную природу, т. е. интерпретируются как выборка из соответствующей генеральной совокупности. К основным задачам этого подраздела относятся: оценивание статистическое (см.) исследуемых многомерных распределений, их основных числовых характеристик и параметров; исследование свойств используемых статистич. оценок; исследование распределений вероятностей для ряда статистик, с помощью к-рых строятся статистич. критерии проверки различных гипотез о вероятностной природе анализируемых многомерных данных (см. Проверка статистич. гипотез). А.м.с. характера и структуры взаимосвязей компонент исследуемого многомерного признака объединяет понятия и рез-ты, обслуживающие такие методы и модели, как множественная регрессия (см. Анализ регрессионный), анализ дисперсионный (см.), анализ ковариационный (см.), анализ факторный (см.), анализ корреляционный (см.), поиск взаимодействий (см.), анализ логлинейный (см.), анализ латентно-структурный (см.). Методы, принадлежащие к этой группе, включают как алгоритмы, основанные на предположениях о вероятностной природе данных, так и методы, не укладывающиеся в рамки к.-л. вероятностной модели. А.м.с. геометрич. структуры исследуемой совокупности многомерных наблюдений объединяет понятия и рез-ты таких моделей и схем, как анализ дискриминантный (см.), анализ кластерный (см. Методы классификации), шкалирование многомерное (см.). Узловым во всех этих схемах является понятие расстояния, либо меры близости (см.) между анализируемыми элементами. При этом анализируемыми могут быть как реальные объекты, для каждого из к-рых фиксируются значения рассматриваемых признаков (тогда геометрич. образом каждого исследуемого объекта будет точка в соответствующем признаковом пространстве (см. Признак)), так и сами признаки (тогда геометрич. образом каждого признака будет точка в соответствующем *объектном* пространстве). Прикладное назначение А.м.с. состоит в основном в обслуживании следующих трех проблем: проблемы статистич. исследования зависимостей между анализируемыми показателями; проблемы классификации элементов (объектов или признаков); проблемы снижения размерности исследуемого признакового пространства и отбора наиболее информативных признаков. Лит.: Андерсон Т. Введение в многомерный статистический анализ. М., 1963; Кендалл М.Дж., Стьюарт А. Многомерный статистический анализ и временные ряды. М., 1976; Статистические методы анализа социологической информации. М., 1979; Типология и классификация в социологических исследованиях. М., 1982; Интерпретация и анализ данных в социологических исследованиях. М., 1987. С.А. Айвазян. смотреть

Читать еще:  Анализ предметной области информационной системы

АНАЛИЗ МНОГОМЕРНЫЙ СТАТИСТИЧЕСКИЙ

раздел математической статистики , предназначенный для анализа связей между тремя и более переменными. Можно условно выделить три основных класса задач А.М.С. Это исследование структуры связей между переменными и снижение размерности пространства признаков, построение классификаций и типологий, исследование причинных связей. Для представления структуры связей между переменными обычно используется матрица корреляций . Ее анализ, заключающийся в выделении подмножеств переменных, тесно коррелирующих друг с другом, может осуществляться *вручную*, например, с помощью графа, отражающего наиболее существенные связи между переменными, либо методами компьютерного анализа, такими, как метод главных компонент, факторный анализ, кластерный анализ переменных. Анализ структуры связей часто рассматривается в качестве самостоятельной задачи, например, при исследовании структуры ценностей, мотивов и т.п., для проверки психометрических шкал на надежность и в других случаях. Однако он может использоваться и в качестве промежуточного этапа при решении задачи снижения размерности пространства признаков. Снижение размерности обычно применяется для построения пространства, более удобного для решения задач классификации и исследования причинных связей, чем исходный набор переменных. Задача снижения размерности заключается в том, чтобы от большого количества исходных переменных перейти к нескольким обобщенным показателям. Метод главных компонент , анализ факторный , метод многомерного шкалирования предусматривают для этого разнообразные процедуры. Задачи и методы классификации, в зависимости от условий, делятся на три группы: классификация по заданным формальным критериям, автоматическая классификация и классификация с обучением. Классификация по заданным критериям, строго говоря, не является статистическим методом. Она состоит в группировке объектов по одному или нескольким показателям. В последнем случае классификация называется перекрестной или лингвистической (например, половозрастная структура населения). Автоматическую классификацию применяют в тех случаях, когда критерии группировки неизвестны и отсутствуют априорные представления о количестве и характере классов. Для ее построения используются методы анализа кластерного , позволяющие выделить группы объектов, близких друг к другу по значениям измеренных переменных. В основе кластерного анализа лежит вычисление расстояний между объектами. Классификация с обучением применяется, когда критерии классификации неизвестны, но известно количество классов и их типологические особенности. В этом случае может быть сформирована так называемая выборка обучающая , состоящая из реальных объектов, обладающих соответствующими характеристиками, или/и искусственных объектов моделей *типичных представителей* классов. В обучающей выборке должны присутствовать *представители* всех предполагаемых классов. Классификация конкретного объекта состоит в том, что вычисляется расстояние между ним и объектами из обучающей выборки и объект причисляется к тому классу, расстояние до которого для него оказалось минимальным. Классификация с обучением осуществляется некоторыми методами кластерного и дискриминантного анализа. Анализу статистических причинных связей в последние годы уделяется особое внимание. Классическим методом для решения таких задач является дисперсионный анализ, в основе которого лежит эксперимент факторный (не путать с анализом факторным ). Начиная с 1960-х активно разрабатываются регрессионные и регрессионно-подобные причинные модели ( Каузальное моделирование), а также техники, позволяющие использовать в этих моделях не только *количественные*, но и *качественные* переменные ( Dummy-кодирование). В настоящее время для исследования причинных связей, в зависимости от характера используемых переменных, применяются методы множественной линейной регрессии, логистической регрессии, дискриминантного анализа и т.п. Эти методы предполагают наличие единственной зависимой переменной и не позволяют исследовать структуру связей между независимыми переменными (предикторами). Структура связей между предикторами может быть учтена в моделях анализа путевого . Наиболее общим является метод линейных структурных уравнений , позволяющий строить сложные модели с большим числом взаимодействующих между собой зависимых и независимых переменных, среди которых могут быть не только наблюдаемые, но и латентные признаки. Регрессионный, дисперсионный, путевой и факторный анализ являются его частными случаями. О.В. Терещенко. смотреть

Читать еще:  Анализ чувствительности проекта

Многомерный статистический анализ: сущность и виды;

Пример

Имеются данные о выпуске продукции группой предприятий по месяцам (млн. руб.):

Для выявления общей тенденции роста выпуска продукции произведем укрупнение интервалов. Для этой цели исходные (месячные) данные о выработке продукции объединяем в квартальные и получаем показатели выпуска продукции группой предприятий по кварталам:

В результате укрупнения интервалов общая тенденция роста выпуска продукции данной группой предприятий выступает отчетливо:

Выявление общей тенденции ряда динамики можно произвести также путем сглаживания ряда динамики с помощью метода скользящей средней. Сущность этого приема состоит в том, что по исходным уровням ряда (эмпирическим данным) определяют расчетные (теоретические) уровни. При этом посредством осреднения эмпирических данных индивидуальные колебания погашаются, и общая тенденция развития явления выражается в виде некоторой плавной линии (теоретические уровни).

Основное условие применения этого метода состоит в вычислении звеньев подвижной (скользящей) средней из такого числа уровней ряда, которое соответствует длительности наблюдаемых в ряду динамики циклов.

Недостатком способа сглаживания рядов динамики является то, что полученные средние не дают теоретических закономерностей (моделей) рядов, в основе которых лежала бы математически выраженная закономерность и это позволяло бы не только выполнить анализ, но и прогнозировать динамику ряда на будущее.

Значительно более совершенным приемом изучения общей тенденции в рядах динамики является аналитическое выравнивание. При изучении общей тенденции методом аналитического выравнивания исходят из того, что изменения уровней ряда динамики могут быть с той или иной степенью точности приближения выражены усреднённо с помощью определенных математических функций. Путем теоретического анализа выявляется характер развития явления, и на этой основе выбирается то или иное математическое выражение типа изменения явления: по прямой, по параболе второго порядка, показательной (логарифмической) кривой и т.п.

Очевидно, что уровни временных рядов формируются под совокупным влиянием множества длительно и кратковременно действующих факторов, в т.ч. различного рода случайностей. Изменение условий развития явления приводит к более или менее интенсивной смене самих факторов, к изменению силы и результативности их воздействия и, в конечном счете, к вариации уровня изучаемого явления во времени.

Многомерный статистический анализ — раздел статистики математической, посвященный математическим методам, направленным на выявление характера и структуры взаимосвязей между компонентами исследуемого многомерного признака и предназначенным для получения научных и практических выводов. Исходным массивом многомерных данных для проведения такого анализа обычно служат результаты измерения компонент многомерного признака для каждого из объектов исследуемой совокупности, т.е. последовательность многомерных наблюдений. Многомерный признак чаще всего интерпретируется как многомерная величина случайная, а последовательность многомерных наблюдений — как выборка из генеральной совокупности. В этом случае выбор метода обработки исходных статистических данных производится на основе тех или иных допущений относительно природы закона распределения изучаемого многомерного признака.

По содержанию многомерный статистический анализ может быть условно разбит на три основных подраздела:

1. Анализ многомерных распределений и их основных характеристик охватывает ситуации, когда обрабатываемые наблюдения имеют вероятностную природу, т.е. интерпретируются как выборка из соответствующей генеральной совокупности. К основным задачам этого подраздела относятся: оценивание статистическое исследуемых многомерных распределений и их основных параметров; исследование свойств используемых статистических оценок; исследование распределений вероятностей для ряда статистик, с помощью которых строятся статистические критерии проверки различных гипотез о вероятностной природе анализируемых многомерных данных.
2. Анализ характера и структуры взаимосвязей компонент исследуемого многомерного признака объединяет понятия и результаты, присущие таким методам и моделям, как анализ регрессионный, анализ дисперсионный, анализ ковариационнй, анализ факторный, анализ латентно-структурный, анализ логлинейный, поиск взаимодействий. Методы, принадлежащие к этой группе, включают как алгоритмы, основанные на предположении о вероятностной природе данных, так и методы, не укладывающиеся в рамки какой-либо вероятностной модели (последние чаще относят к методам анализа данных).

3. Анализ геометрической структуры исследуемой совокупности многомерных наблюдений объединяет понятия и результаты, свойственные таким моделям и методам, как анализ дискриминантный, анализ кластерный, шкалирование многомерное. Узловым для этих моделей является понятие расстояния, либо меры близости между анализируемыми элементами как точками некоторого пространства. При этом анализироваться могут как объекты (как точки, задаваемые в признаковом пространстве), так и признаки (как точки, задаваемые в объектном пространстве).

Прикладное значение многомерного статистического анализа состоит в основном в обслуживании следующих трех проблем:

— проблемы статистического исследования зависимостей между рассматриваемыми показателями;

— проблемы классификации элементов (объектов или признаков);

— проблемы снижения размерности рассматриваемого признакового пространства и отбора наиболее информативных признаков.

Ссылка на основную публикацию
Adblock
detector